- Author :
- Publsiher :
- Release : 01 January 1970
- ISBN :
- Pages : pages
- Rating : /5 from ratings
Summary:
Summary:
Advanced Control Design with Application to Electromechanical Systems represents the continuing effort in the pursuit of analytic theory and rigorous design for robust control methods. The book provides an overview of the feedback control systems and their associated definitions, with discussions on finite dimension vector spaces, mappings and convex analysis. In addition, a comprehensive treatment of continuous control system design is presented, along with an introduction to control design topics pertaining to discrete-time systems. Other sections introduces linear H1 and
Electric Drives and Electromechanical Devices: Applications and Control, Second Edition, presents a unified approach to the design and application of modern drive system. It explores problems involved in assembling complete, modern electric drive systems involving mechanical, electrical, and electronic elements. This book provides a global overview of design, specification applications, important design information, and methodologies. This new edition has been restructured to present a seamless, logical discussion on a wide range of topical problems relating to the design and specification
Students entering today's engineering fields will find an increased emphasis on practical analysis, design, and control. They must be able to translate their advanced programming abilities and sound theoretical backgrounds into superior problem-solving skills. Electromechanical Systems and Devices facilitates the creation of critical problem-solvin
Apply Sliding Mode Theory to Solve Control Problems Interest in SMC has grown rapidly since the first edition of this book was published. This second edition includes new results that have been achieved in SMC throughout the past decade relating to both control design methodology and applications. In that time, Sliding Mode Control (SMC) has continued to gain increasing importance as a universal design tool for the robust control of linear and nonlinear electro-mechanical systems. Its strengths result from its
Due to the enormous impact of mechatronics systems, we encounter mechatronics and micromechatronic systems in our daily activities. Recent trends and novel technologies in engineering have increased the emphasis on integrated analysis, design, and control. This book examines motion devices (actuators, motors, transducers and sensors), power electronics, controllers, and electronic solutions with the main emphasis placed on high-performance mechatronic systems. Analysis, design, optimization, control, and implementation issues, as well as a variety of enabling mechatronic systems and devices, are also
This contributed volume is written by key specialists working in multidisciplinary fields in electrical engineering, linking control theory, power electronics, artificial neural networks, embedded controllers and signal processing. The authors of each chapter report the state of the art of the various topics addressed and present results of their own research, laboratory experiments and successful applications. The presented solutions concentrate on three main areas of interest: · motion control in complex electromechanical systems, including sensorless control; · fault diagnosis and fault tolerant
Advanced Control Engineering provides a complete course in control engineering for undergraduates of all technical disciplines. Included are real-life case studies, numerous problems, and accompanying MatLab programs.
Recent trends in engineering show increased emphasis on integrated analysis, design, and control of advanced electromechanical systems, and their scope continues to expand. Mechatronics-a breakthrough concept-has evolved to attack, integrate, and solve a variety of emerging problems in engineering, and there appears to be no end to its application. It has become essential for all engineers to understand its basic theoretical standpoints and practical applications.Electromechanical Systems, Electric Machines, and Applied Mechatronics presents a unique combination of traditional engineering topics
This book presents the proceedings of the Third International Conference on Electrical Engineering and Control (ICEECA2017). It covers new control system models and troubleshooting tips, and also addresses complex system requirements, such as increased speed, precision and remote capabilities, bridging the gap between the complex, math-heavy controls theory taught in formal courses, and the efficient implementation required in real-world industry settings. Further, it considers both the engineering aspects of signal processing and the practical issues in the broad field of
This monograph presents recent advances in differential flatness theory and analyzes its use for nonlinear control and estimation. It shows how differential flatness theory can provide solutions to complicated control problems, such as those appearing in highly nonlinear multivariable systems and distributed-parameter systems. Furthermore, it shows that differential flatness theory makes it possible to perform filtering and state estimation for a wide class of nonlinear dynamical systems and provides several descriptive test cases. The book focuses on the design of
The essence of this work is the control of electromechanical systems, such as manipulators, electric machines, and power converters. The common thread that links together the results presented here is the passivity property, which is at present in numerous electrical and mechanical systems, and which has great relevance in control engineering at this time. Amongst other topics, the authors cover: Euler-Lagrange Systems, Mechanical Systems, Generalised AC Motors, Induction Motor Control, Robots with AC Drives, and Perspectives and Open Problems. The
Recent trends in engineering show increased emphasis on integrated analysis, design, and control of advanced electromechanical systems, and their scope continues to expand. Mechatronics-a breakthrough concept-has evolved to attack, integrate, and solve a variety of emerging problems in engineering, and there appears to be no end to its application. It has become essential for all engineers to understand its basic theoretical standpoints and practical applications. Electromechanical Systems, Electric Machines, and Applied Mechatronics presents a unique combination of traditional engineering topics
This carefully edited book introduces the latest achievements of the scientists of the Russian Academy of Sciences in the field of theory and practice of Smart Electromechanical Systems (SEMS). The book also focuses on methods of designing and modeling of SEMS based on the principles of adaptability, intelligence, biomorphism of parallel kinematics and parallelism in information processing and control computation. The book chapters are dedicated to the following points of interest: - methods of design of SEMS modules and intelligent
Control engineering seeks to understand physical systems, using mathematical modeling, in terms of inputs, outputs and various components with different behaviors. It has an essential role in a wide range of control systems, from household appliances to space flight. This book provides an in-depth view of the technologies that are implemented in most varieties of modern industrial control engineering. A solid grounding is provided in traditional control techniques, followed by detailed examination of modern control techniques such as real-time, distributed,