• Home
  • Theory of Modeling and Simulation

Theory of Modeling and Simulation

Theory of Modeling and Simulation
  • Author : Bernard P. Zeigler
  • Publsiher : Academic Press
  • Release : 24 January 2000
  • ISBN : 9780127784557
  • Pages : 510 pages
  • Rating : 4/5 from 3 ratings
GET THIS BOOKTheory of Modeling and Simulation

The increased computational power and software tools available to engineers have increased the use and dependence on modeling and computer simulation throughout the design process. These tools have given engineers the capability of designing highly complex systems and computer architectures that were previously unthinkable. Every complex design project, from integrated circuits, to aerospace vehicles, to industrial manufacturing processes requires these new methods. This book fulfills the essential need of system and control engineers at all levels in understanding modeling and simulation. This book, written as a true text/reference has become a standard sr./graduate level course in all EE departments worldwide and all professionals in this area are required to update their skills. The book provides a rigorous mathematical foundation for modeling and computer simulation. It provides a comprehensive framework for modeling and simulation integrating the various simulation approaches. It covers model formulation, simulation model execution, and the model building process with its key activities model abstraction and model simplification, as well as the organization of model libraries. Emphasis of the book is in particular in integrating discrete event and continuous modeling approaches as well as a new approach for discrete event simulation of continuous processes. The book also discusses simulation execution on parallel and distributed machines and concepts for simulation model realization based on the High Level Architecture (HLA) standard of the Department of Defense. Presents a working foundation necessary for compliance with High Level Architecture (HLA) standards Provides a comprehensive framework for continuous and discrete event modeling and simulation Explores the mathematical foundation of simulation modeling Discusses system morphisms for model abstraction and simplification Presents a new approach to discrete event simulation of continuous processes Includes parallel and distributed simulation of discrete event models Presents a concept to achieve simulator interoperability in the form of the DEVS-Bus